Calculating area of fractional‐order memristor pinched hysteresis loop
نویسندگان
چکیده
منابع مشابه
Analytical Computation of the Area of Pinched Hysteresis Loops of Ideal Mem-Elements
The memory elements, memristor being the best known of them, driven by a periodical waveform exhibit the well-known pinched hysteresis loops. The hysteresis is caused by a memory effect which results in a nonzero area closed within the loop. This paper presents an analytical formula for the loop area. This formula is then applied to memory elements whose parameter-vs.-state maps are modeled in ...
متن کاملPinched hysteresis loops are a fingerprint of square law capacitors
It has been claimed that pinched hysteresis curves are the fingerprint of memristors. This paper demonstrates that a linear resistor in parallel with a nonlinear, square law capacitor also produces pinched hysteresis curves. Spice simulations are performed examining the current vs. voltage behavior of this circuitry under different amplitudes and frequencies of an input signal. Based on this fi...
متن کاملComputing with volatile memristors: An application of non-pinched hysteresis
The possibility of in-memory computing with volatile memristive devices, namely, memristors requiring a power source to sustain their memory, is demonstrated theoretically. We have adopted a hysteretic graphene-based field emission structure as a prototype of a volatile memristor, which is characterized by a non-pinched hysteresis loop. A memristive model of the structure is developed and used ...
متن کاملComments on Pinched Hysteresis Loops of Memristive Elements
The hysteresis loops pinched in the v-i origin belong to well-known fingerprints of memristive elements driven by bipolar periodical signals. Some element properties follow from the loop behavior in the close neighborhood of the origin. The paper analyzes this behavior of the memristive elements that produce steady-state hysteresis loops under harmonic excitation. It is shown that there is a co...
متن کاملReversible hysteresis loop tuning
We utilize antiferromagnetically coupled bilayer structures to magnetically tune hysteresis loop properties. Key element of this approach is the non-overlapping switching fi eld distribution of the two magnetic layers that make up the system: a hard magnetic CoPtCrB layer (HL) and a soft magnetic CoCr layer (SL). Both layers are coupled antiferromagnetically through an only 0.6-nm-thick Ru inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Engineering
سال: 2015
ISSN: 2051-3305,2051-3305
DOI: 10.1049/joe.2015.0154